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Abstract: Constructing diverse and complex multi-modal datasets is crucial for advancing human
action analysis research, providing ground truth annotations for training deep learning networks,
and enabling the development of robust models across real-world scenarios. Generating natural
and contextually appropriate nonverbal gestures is essential for enhancing immersive and effective
human–computer interactions in various applications. These applications include video games,
embodied virtual assistants, and conversations within a metaverse. However, existing speech-related
human datasets are focused on style transfer, so they have limitations that make them unsuitable for
3D human action analysis studies, such as human action recognition and generation. Therefore, we
introduce a novel multi-modal dataset, DGU-HAU, a dataset for 3D human action on utterances that
commonly occurs during daily life. We validate the dataset using a human action generation model,
Action2Motion (A2M), a state-of-the-art 3D human action generation model.

Keywords: 3D human action analysis; human activity understanding; motion capture; multi-modal
dataset; utterance dataset

1. Introduction

Human action analysis research is important in understanding and interpreting human
behavior from various perspectives. This field is crucial for multiple applications, including
video surveillance, healthcare, robotics, sports analysis, and entertainment. Human action
analysis research can enhance safety, efficiency, and automation in various industries by
accurately recognizing, predicting, and modeling human actions.

Constructing datasets suitable for human action analysis is significant for advancing
this research domain. The datasets provide essential ground truth annotations for training
and evaluating deep learning networks of human action analysis research such as action
recognition, action prediction, action generation and modeling, pose estimation, real-time
action analysis, etc. As diverse and complex human actions span multiple contexts and
environments, the datasets allow researchers to develop robust models that generalize well
across real-world scenarios. Furthermore, well-structured datasets foster healthy competition
within the research community, inspiring the development of more accurate and efficient
action analysis techniques. Previous human action analysis datasets were unimodal, mainly
based on RGB images or videos [1]. These datasets do not contain depth information, so they
need pre-processing to reconstruct the 3D skeleton. With the introduction of depth sensors,
such as Microsoft Kinect [2,3] and IR cameras [4,5], it is possible to build multi-modal human
action analysis datasets containing RGB, depth, and 3D skeleton data. Therefore, we aim to
introduce a general-purpose human action analysis dataset and validate the dataset with the
human action generation model [6] in this paper.
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The generation of human-like movements has garnered significant attention and
research across disciplines such as computer vision, graphics, and animation. This field
aims to develop algorithms and models that can produce realistic and natural movements
resembling those of humans. By capturing the intricacies of human motion, many studies
strive to enhance the quality and believability of virtual characters, avatars, and animations,
thereby creating immersive experiences in various domains, including entertainment,
virtual reality, and robotics.

To achieve truly immersive and effective human–computer interactions, generat-
ing nonverbal gestures that appear natural and appropriate is crucial across a range of
conversational scenarios. This necessity has emerged in various applications, including
communication with characters in video games, embodied virtual assistants, and avatars
conversing in a metaverse. In video games, lifelike character animations convey emotions,
intentions, and interactions, enabling players to engage with the virtual world more deeply.
Embodied virtual assistants, such as chatbots or virtual agents, can benefit from natural
gestures to enhance their expressiveness and facilitate more intuitive communication with
users. Moreover, as the concept of the metaverse continues to evolve, avatars engaging in
conversations within this virtual realm will require nonverbal gestures that are contextually
appropriate, enabling users to connect and communicate effectively in this immersive envi-
ronment. In all these scenarios, the research on generating natural nonverbal gestures aims
to bridge the gap between verbal communication and nonverbal expressions, enhancing
human–computer interactions’ overall effectiveness and believability.

Previous studies on human action generation models include Generative Adversarial
Network (GAN)-based [7,8], conditional temporal Variational Auto Encoder (VAE)-based [6],
Graph Convolutional Network (GCN)-based [9], and Transformer-based models [10]. Its
dataset [4,5,11,12] has focused on generating human motion for daily activities. Despite
significant progress, several challenges remain in human action generation datasets; no
action generation datasets are related to conversation situations. Research on gesture gen-
eration for speech involves studying the unique gesture style of an individual, replicating
it, and applying it to other objects or contexts. The primary focus of this task is researching
the creation of a specific speech style or style transfer rather than generating general human
behavior that may occur during a conversation.

This paper introduces a novel dataset, DGU-HAU, a dataset for 3D Human Action
on Utterances that commonly occur during daily life. Our dataset is divided into two
categories: single-person presentations and conversations involving two or four people.
Each category has four and ten scenarios, resulting in 142 action classes with approximately
10 classes for each scenario. The group of subjects involved in the study had an almost
equal distribution of males and females, with a total of 166 participants of different age
groups. Therefore, our dataset comprises 142 distinct action classes across 14 scenarios. We
have collected approximately 100 motion capture data samples for each class, resulting
in a total of 2408 JSON annotation files with 14,116 motion capture data samples. Each
JSON annotation file contains annotation information of about six motion capture data
samples. Using the Action2Motion (A2M) [6] model, we validated our dataset. The A2M
model represents the latest 3D human action generation advancement as of 2023. It was
validated across various datasets, employing the Fréchet Inception Distance (FID) [13]
as an evaluation metric. Moreover, the Action2Motion model operates on conditional
temporal VAE principles and crafts physically plausible human actions by leveraging
Lie Algebra. Hence, we adopted A2M to validate our dataset by generating physically
plausible human actions.

The structure of this paper is as follows. Section 2 reviews previous research on
3D-based human action analysis. Section 3 describes the structure of the proposed dataset
and how we pre-processed our dataset. Section 4 explains the dataset evaluation results
with the A2M model and performance analysis. Finally, Section 5 summarizes the paper
and discusses future work.
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2. Related Work
2.1. Generative Pre-Trained Transformer

Recent research trends in GPT (Generative Pre-trained Transformer) [14–16] have
shown significant advancements in natural language processing. GPT, a state-of-the-art
language model [16–19] based on the Transformer [20] architecture, has gained tremendous
attention and popularity in the research community. It has demonstrated remarkable
capabilities in various natural language understanding and generation tasks, including
machine translation, text summarization, question answering, and conversational agents.
Researchers have been actively exploring novel techniques to improve the performance, effi-
ciency, and generalization ability of GPT models. Recent studies have addressed challenges
such as model size, training efficiency, fine-tuning techniques, and ethical considerations
in language generation. Additionally, efforts have been made to extend the capabilities of
GPT models to handle multi-modal tasks that involve both textual and visual inputs. This
paper studies building a multi-modal dataset of such a generative model. Therefore, we
aim to develop a general-purpose 3D human action analysis dataset for tasks involving
text and visual input to overcome the limitations of GPT studies biased toward natural
language processing.

2.2. Gesture Generation

In the human action analysis study, the action generation largely consists of gesture
and 3D human action generation. Firstly, gesture generation is a crucial area of research
in understanding and enhancing an individual’s speech pattern. The primary objective
is to generate expressive gestures that align with the speech context. Several studies
have explored different aspects of gesture generation, including [21]; one notable work by
Ginosar et al. focused on understanding and learning the unique conversational gestures of
ten celebrities. By analyzing a large dataset of their speeches, the study aimed to capture and
reproduce the distinct styles of these individuals in gesture generation. Another relevant
research direction is style transfer in gesture animation. The authors of [22] investigated
the transfer of gesture styles between individuals. The goal was to learn consistent gesture
styles from multiple individuals and apply those styles to different subjects. However, this
task does not match our dataset to generate general gestures or synthesize actions during a
speech to fit the speech context.

2.3. 3D Human Action Generation

In 3D human action generation, several related works have been conducted to explore
various aspects of this research area. The authors of [7] generate realistic and consecutive
human actions using an autoencoder and generative adversarial network. Bi-directional
GAN-based [8] generates action sequences from noise. The author of [8] proposes modeling
smooth and diverse transitions for action generation using a latent space of lower dimen-
sionality. Unlike standard action prediction methods, ref. [8] can generate action sequences
without any conditional action poses from pure noise. The author of [9] suggests a modified
version of GCNs that selectively uses self-attention to sparsify a complete action graph in
the temporal domain. The work in [10] presents a generative VAE transformer-based archi-
tecture model using SMPL [23] for 3D mesh modeling. Conditional temporal VAE-based [6]
used Lie Algebra to generate physically plausible human action. This paper uses this model
to validate our dataset because of the Lie Algebra.

The majority of studies on human action generation use the following datasets: Human
3.6 M [11], NTU RGB+D [4,5], HumanAct12 [6], UESTC [12]. The configuration of those
datasets is described in Table 1. The study in [11] contains 3.6 million frames of motion
capture data, 11 subjects performing 17 motions, four cameras, 3D skeleton motion capture
data including 17 action classes (walking, running, activity, cycling, clapping, lifting, squats,
etc.), and section tagging annotation. The work in [5] includes 114,480 motion capture
sequences performed by 106 subjects. The dataset includes 120 motions, such as hand
waving, picking up objects, sitting, standing up, walking, running, and more. The dataset
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also includes RGB+D, 3D skeleton motion capture data, and section tagging annotation.
The work in [6] includes motion capture data for 12 action categories, such as warm-up and
lifting a dumbbell, and 34 subcategories, including warming up the elbow and lifting the
dumbbell with the right hand, as well as segment tagging annotations. The work in [12]
contains 40 categories of aerobic exercise with 118 subjects, as shown in Table 1. Our dataset
has the largest number of action classes and subjects compared to the other datasets shown
in Table 1.

Table 1. Comparison of the proposed DGU-HAU dataset and other 3D human action datasets. The
Anno. (Annotation) in data is the section tagging annotation data of each data sample with the
metadata, such as actor information, action code, conversation or presentation scenario information,
action class, and its code. Our dataset has a text script modality: the textualization of extracted audio
from each video data sample. Motion capture data (MCD) represent 3D joint information of the
human body.

Dataset
# # # # # # Data Modalities

Year
Frames Video Classes Subjects Views Anno. RGB MCD Anno. Script

Human3.6M [11] 3.6 M - 17 11 4 - 3 3 3 - 2013

NTU RGB+D [4] - 56,880 60 40 80 - 3 3 - - 2016

NTU RGB+D 120 [5] - 114,480 120 106 155 - 3 3 - - 2019

UESTC [12] - 25,600 40 118 9 - 3 3 - - 2019

PHSPD [24,25] 2.1 M 334 31 21 4 - 3 3 3 - 2020

HumanAct12 [6] 90 K - 12 21 4 - 3 3 3 - 2020

DGU-HAU (ours) ≈144 K 1,352 142 166 15 2,408 3 3 3 3 2022

Since gesture generation is a study that learns and imitates a specific human style
that can occur in conversation scenarios, the dataset used for gesture generation comprises
various gestures for each particular person. On the other hand, since the 3D human action
generation study is a study that learns and creates general human actions for a specific
action class, the dataset for this is composed of data in which various people acted on each
action class. Our dataset corresponds to 3D human action generation rather than gesture
generation because it is a dataset of general human actions of specific actions that can
occur in presentation and conversation scenarios. Additionally, as can be seen in Table 1,
the HumanAct12 [6] dataset used in Action2Motion is a smaller dataset than our dataset.
Therefore, the Action2Motion model was used to validate our dataset.

3. Dataset Structure and Building Process

This section describes the data collection environment, tools, methods, and structure.
The overall data-building process for each data modality is schematized in Figure 1.

Figure 1. All data modalities were collected and built simultaneously. The finger’s motion capture
data were collected using MoCap Pro Super Splay, a hand motion data collection device, separate from
the body part’s data. They were merged with the body motion capture data coordinates according to
the human skeleton’s hierarchical structure.
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3.1. Collection Setups

We used 12 Qualisys Arqus A9 devices for motion capture data in a 6∼15 m square
space and 3 Miqus video device for video data, as shown in Figure 2. Two-dimensional
coordinates of each joint marker of the human body are generated from multiple motion
capture cameras (Arqus A9, Qualisys, Göteborg, Sweden), and these two-dimensional
coordinate data are analyzed by software (QTM) (https://www.qualisys.com/software/
qualisys-track-manager/ (accessed on 10 October 2023)) to calculate coordinates in three-
dimensional space. We used MoCap Pro Super Splay, a glove format with 16 sensors,
to acquire the hand motion capture data. Motion capture data for the human body and
hands were collected separately and then integrated using QTM to create a complete
motion capture of the whole human body. There are three distinct viewpoints to collect
RGB video data, and footage is shot at 60 fps or higher. The RGB video is full HD with
1920× 1080 resolution.

Figure 2. Setup of the data collection environment.

3.2. Data Modalities

The proposed dataset, DGU-HAU, provides 14,116 motion capture data samples with
2408 annotation data samples, and there are four data modalities: motion capture data, RGB
video, scenario script, and annotation data. The overall building steps for each modality
of our dataset are shown in Figure 1. The samples of each data modality are shown in
Figure 3.

(a) Sample of the MCD (b) Sample of the annotation data

Figure 3. Cont.

https://www.qualisys.com/software/qualisys-track-manager/
https://www.qualisys.com/software/qualisys-track-manager/
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(c) Sample of the RGB video data

Figure 3. Sample data of each data modality. (a) A sample of the 3D motion capture data (MCD),
which is formatted in bvh. Green points mean right body joints, blue points mean left body joints,
yellow lines mean the line connecting the connected joints, and orange means the bone.; (b) a sample
of the annotation data, which is formatted in JSON; (c) a sample of the RGB video data.

3.2.1. Motion Capture Data (MCD)

Our dataset provides 14,116 motion capture data samples of the human body in
BVH (BioVision Hierarchy) format. This common file format delivers motion capture data
that represent 3D coordinates of the joints of humans, as shown in Figure 4. The BVH
format consists of a hierarchy section and a motion section. In the hierarchy section, the
information on the human skeleton joints is represented in a tree structure, and each joint
has an offset and a channel list. The channel list is a transformation list for motion at
that point.

Figure 4. Configuration of the body joints and label in our dataset.

First, we collected raw samples of motion capture data in FBX (Filmbox) format using
12 Qualisys Arqus A9 devices, as shown in Figures 1 and 2. Then, we cleaned up the
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collected data by labeling body part markers and recovering missing data and noise. After
cleaning up, we verified the collected data and extracted the skeleton information from
the raw data. We collected body and finger joint data separately to create a dataset that
can detect precise finger movements. Thus, we obtained 3D coordinates for 75 body joints,
consisting of 27 for the human body and 24 for the left and right human fingers. We labeled
the motion capture data, extracted each 3D coordinate, and converted it to JSON format for
ease of use. We selected and employed 24 representative joints out of 75 for data verification.
Figure 4 displays information about the position, number, and label of the selected joints in
this paper.

3.2.2. RGB Video

Our dataset provides 1352 RGB videos of the various versions of each action class
related to the utterance in MP4 format, of which the resolution is 1920 × 1080. Each
RGB video has more than one action class, and the section tagging information of each
action class is in the annotation data. As shown in Figure 2, we filmed the 14 scenarios,
including about ten action classes in three different views (front, left, and right side) using
Qualisys Miqus devices. After collecting the video data, we anonymized the video to
protect personal information. We then verified that the data anonymization process was
successful, as shown in Figure 1. Simultaneously, we extracted the audio data in MP3
format from the verified video data for the scenario script; the other modality is described
in the next section.

3.2.3. Scenario Scripts

Our dataset provides 1352 scenario scripts, based on the audio extracted from RGB
videos, in the text file, as shown in Table 1. We wrote a scenario script based on the audio
data extracted from each collected RGB video. After that, we checked the audio-to-text
scenario script for errors such as typos and profanity and whether the lines matched well
with the uttered actors and times. As shown in Table 2, it consists of a total of fourteen types
of scenarios; four scenario types are scenarios for one-person presentation circumstances,
and ten scenario types are scenarios for two- or four-person conversation circumstances.
We collected data samples for 14 types of scenarios with various combinations of actors.

Table 2. Data modality and description of each modality.

Data Modality File Format Description

Motion
Capture

Data (MCD)
BVH - 3D coordinate of joint

- Number of joints: 24

RGB Video MP4 - Resolution: 1920× 1080
- Number of views: 3

Scenario
Scripts TXT

- Text script of 14 action scenarios:
presentation × 4
conversation × 10

Annotation
Data JSON

- Metadata of the other data modalities
- Configuration: pre-processed MCD,
scenario code, scenario name, action code,
action class, actor ID, video section
tagging, etc.

3.2.4. Annotation Data

Our dataset provides 2408 annotation data samples, and each annotation data file
contains the annotation information of about 6 motion capture data samples. Therefore,
we have 14,116 motion capture data samples. The annotation data are the metadata of
the others. They include the information of the dataset, annotation of the video, and each
action, actor, scenario, action information, corresponding video section information, and
motion capture data, as shown in Table 3. In the annotation part of the motion capture data,
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there are frame ID and 3D coordinates of the body joints in Figure 4. The name of the action
class is tagged based on predefined start and end points and conversation content. There
are a total of 75 body joints, of which 48 body joints are related to finger joints, as shown
in Table 3. It represents the 3D coordinates of 24 joints for the right and left hands. The
remaining 27 body joints represent important joints in the human body. When verifying
the data, we referred to [6] and selected 24 body joints that appropriately expressed the
human body out of 75 body joints to construct a skeleton. A more detailed body joint label
annotation is described in [26].

Table 3. Configuration of annotation data in JSON format. More detailed body joint label annotation
is described in [26].

Category Type Description

1. info object information on the data
1.1 name string name of the dataset
1.2 creator string name of the constructor
1.3 date_created string date of the deployment

2. annotation object information of the annotation
2.1 video object information of the video

2.1.1 filename string file name of the video
...

...
...

2.2 actionAnnotationList array action annotation
2.2.1 actor_id number ID of the actor
...

...
...

3. categories object information of the categories
3.1 actionCategories array list of the action classes

3.1.1 id number ID of action scenario
...

...
...

3.2 actionScenarioList array list of the action scenarios
3.2.1 id number ID of action scenario
...

...
...

4. actors array information of the actors
4.1 id number ID of the actor
...

...
...

5. mocap_data array motion capture data
5.1 frame number frame id
5.2 bodyJoints object coordinate info. of the keypoints

5.2.1 Skeletons array 3D coordinates of the Skeleton
5.2.2 Reference array 3D coordinates of the Reference
5.2.3 Hips array 3D coordinates of the (0) Hips
...

...
...

5.2.77 HeadEnd array 3D coordinates of the HeadEnd

3.3. Subjects

The dataset includes 166 subjects of different ages and genders, each with a unique
actor ID number. The subjects were recruited with an equal number of males and females
and varying ages to mitigate bias. Table 4 shows the number of data samples by age and
gender groups. The subjects’ age groups were divided into three groups: the young group
in their teens and 20 s, the middle group in their 30 s and 40 s, and the old group in their
50 s and 60 s. Y denotes the young group, M represents the middle group, and O means
the old group. There are 1128 data samples containing female subjects and 1280 data
samples containing male subjects, and the data are structured in an almost 1:1 ratio in
the gender of subjects. The number of data samples by group is 226, 430, and 472 in the
order of old, middle, and young groups for female subjects, respectively, and 344, 509,
and 427 for male subjects. In the conversation scenario, each scenario comprised more
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than 84 different subjects. In the presentation scenario, each scenario included more than
170 different subjects.

Table 4. Gender and age ratio of the subjects. FM denotes female, and MA denotes male.

Gender Age Group Detailed # of Data Samples Sub Total

FM
O Old: 50–60 s 226

1128M Middle: 30–40 s 430
Y Young: 10–20 s 472

MA
O Old: 50–60 s 344

1280M Middle: 30–40 s 509
Y Young: 10–20 s 427

3.4. Action Classes

Our dataset has 142 action categories among four presentation and ten conversation
scenarios. There are four types of presentations: sitting and standing presentations, as well
as explanations. The ten conversations cover various scenarios that commonly occur daily,
including daily life (specifically watching TV), consoling someone, celebrating a birthday,
etc. Tables 5 and 6 describes the scenario code, scenario name, action class code, and action
class name of the action classes and scenarios. The table only includes brief information
about action classes and scenarios. The full table is in [27,28].

Table 5. Configuration of the 37 action classes and their action codes in the four presentation scenarios.
The work in [27] shows the full table about the configuration of 37 action classes.

Scenario Code Scenario Action Code Action Class

S101
stand up
and do a

presentation

A106 holding the microphone with both hands
...

...
A115 taking a step forward and bowing a head in greeting

S102
sit down
and do a

presentation

A116 counting by hand
...

...
A123 expressing a part of the drawn circle

S103 stand up
and explain

A124 pointing to the work displayed behind with the
left hand...
...

A133 moving towards the work behind the audience

S104 sit down
and explain

A134 waving of hand of greeting
...

...
A142 end greeting while sitting down

Table 6. Configuration of the 105 action classes and their action codes in the ten conversation
scenarios. The work in [28] shows the full table about the configuration of the 105 action classes.

Scenario Code Scenario Action Code Action Class

S201 daily life
(watching TV)

A001 looking around and finding the remote control
...

...

S202 consolation
A013 covering face with hands and sighing

...
...

S203 celebrating
birthday

A023 showing up with a cake
...

...
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Table 6. Cont.

Scenario Code Scenario Action Code Action Class

S204 doctor’s office
A033 opening the door and entering in

...
...

S205
asking the

station staff
for directions

A042 taking a phone out of pocket
...

...

S206 taking a picture
of someone else

A052 taking selfie
...

...

S207 catch up
A065 showing a phone to the opponent

...
...

S208
shopping for
clothes at a

department store

A073 choosing clothes from a hanger
...

...

S209 intercompany
business meeting

A083 bowing down in greeting
...

...

S210 grocery
shopping

A096 looking at the notes while walking
...

...

A105 taking something and putting it in a
shopping cart

4. Dataset Pre-Processing and Evaluation with Action2Motion
4.1. Data Pre-Processing

We validated our dataset using Action2Motion [6], as mentioned earlier. Therefore, to
generate 3D plausible human actions, we trained the A2M model with our data and used
the trained A2M model to create 3D human actions as GIF files. To do this, we pre-processed
the data according to the input format of the A2M model. The overall pre-processing and
generating action steps for our dataset are shown in Figure 5.

Figure 5. Overall steps of pre-processing our dataset to train the A2M [6] model. We extracted
coordinates from labeled motion capture data to generate the NumPy file of 3D coordinates of human
action. We trained the A2M model with pre-processed data and generated a new 3D human action in
GIF format.

We obtained the first pre-processed 3D human action data in JSON file format through
annotation of BVH format motion capture data, and the second pre-processed 3D coordinate
data in the NumPy format through the extraction of 3D coordinates, as shown in Figure 5.
The extraction of 3D coordinates involves two main steps. First, we extract the information
from the 24 joint we selected among the 75 joints’ information during the frame section
corresponding to the action class from each data sample. Second, the 3D coordinate values
of the extracted 24 joints were converted to the NumPy format to match the input format
of the model. The final pre-processed dataset was trained using the A2M model to create
a new action synthesis. We measured its similarity to the existing ground truth using the
FID metric.
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4.2. Evaluation Results for A2M Model

This paper uses the A2M model to evaluate our dataset. Following [6], four metrics,
FID, accuracy, diversity, and multi-modality, are considered to validate our dataset as a
metric. FID [13] is a metric used to measure the performance of generative models. It
assesses the similarity between generated and ground truth data. The FID comprises two
main components: Inception Score and Fréchet Distance. The FID is obtained by applying
the following operation:

FID = ‖µreal − µ f ake‖2 + Tr(Σreal + Σ f ake − 2(ΣrealΣ f ake)
1/2 + FID2

score (1)

where µreal and µ f ake represent the means of the feature vectors for real and generated
data, respectively. Σ f ake and Σreal represent the covariances of the feature vectors for gener-
ated and ground truth data, respectively. FIDscore represents the difference in Inception
Scores [13].

FID is related to human intuition in that it is based on feature vectors that capture
an abstract representation between generated and real data. Therefore, FID matches well
with general intuition about how similar a generated image feels to real data. Additionally,
FID calculates the Frèchet Distance between two multivariate normal distributions, which
can quantify and compare the similarities and differences between the two distributions
through statistical methods. Therefore, we used FID as the main data evaluation metric.
Diversity gauges the deviation of the generated motions across all categories of actions.
Unlike diversity, multi-modality assesses the extent to which the generated motions exhibit
diversity within each action category.

The hardware specifications of dataset evaluation are listed in Table 7, and the hy-
perparameter settings of the A2M model are shown in Table 8 below. We proceeded with
training by maintaining the hyperparameter settings of the A2M model [6]. We used
NVIDIA GeForce RTX 3090 GPU for training and evaluating our dataset, and the employed
learning parameters are shown in Table 8 below.

Table 7. The hardware specifications.

Element Specification

CPU Intel Xeon Gold 6226R 2.90 GHz

Memory 256 GB

GPUs Nvidia GeForce RTX 3090

OS Ubuntu 18.04

Framework Pytorch 1.8.2 + CUDA 11.1

Table 8. Configuration of the hyperparameters.

Hyperparameter Value Description

lambda_kld 0.001 Weight of KL Divergence

lambda_align 0.5 Weight of align loss

time_counter true Enable time count in generation

tf_ratio 0.6 Teacher force learning ratio

use_lie true Use Lie Representation

batch_size 16 Batch size of training process

iterations 50,000 Training iterations

Since the action class classifier of the A2M model can only classify up to 13 action
classes, we separately trained 14 scenarios. According to Tables 5 and 6, there are no more
than 13 action classes in each scenario in our dataset. Therefore, we trained the A2M model
for each scenario, and the evaluation results are shown in Table 9.
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Table 9. Evaluation results of our dataset for each scenario. The lower the FID and the higher the
Accuracy, the better the performance.

Scenario
Code

Evaluation Metrics (Real Motion) Evaluation Metrics (Generated)

FID ↓ Accuracy ↑ Diversity → Multi
Modality → FID ↓ Accuracy ↑ Diversity → Multi

Modality →

S101 0.050 ± 0.0053 0.998 ± 0.0002 6.673 ± 0.0843 1.576 ± 0.0116 0.161 ± 0.0005 0.934 ± 0.0008 6.636 ± 0.0514 1.830 ± 0.0263

S102 0.042 ± 0.0039 0.993 ± 0.0004 6.643 ± 0.0686 1.631 ± 0.0198 0.524 ± 0.0311 0.886 ± 0.0016 6.512 ± 0.0930 2.052 ± 0.0286

S103 0.045 ± 0.0030 0.983 ± 0.0005 6.599 ± 0.0969 1.674 ± 0.0185 0.342 ± 0.0113 0.864 ± 0.0016 6.569 ± 0.0832 1.871 ± 0.0177

S104 0.039 ± 0.0029 0.956 ± 0.0008 6.526 ± 0.0821 1.965 ± 0.0206 0.356 ± 0.0109 0.829 ± 0.0018 6.689 ± 0.0718 2.185 ± 0.0308

S201 0.062 ± 0.0047 0.979 ± 0.0005 6.534 ± 0.0658 2.735 ± 0.0163 0.387 ± 0.0065 0.618 ± 0.0023 6.300 ± 0.0554 3.971 ± 0.0223

S202 0.057 ± 0.0052 0.975 ± 0.0006 6.536 ± 0.0671 2.836 ± 0.0290 1.532 ± 0.0161 0.612 ± 0.0020 6.265 ± 0.0506 3.991 ± 0.0296

S203 0.051 ± 0.0035 0.974 ± 0.0007 6.501 ± 0.0648 2.357 ± 0.0205 1.082 ± 0.0261 0.552 ± 0.0018 6.154 ± 0.0557 4.198 ± 0.0282

S204 0.049 ± 0.0033 0.986 ± 0.0006 6.493 ± 0.0649 2.478 ± 0.0238 0.487 ± 0.0178 0.685 ± 0.0020 6.276 ± 0.0625 4.301 ± 0.0304

S205 0.046 ± 0.0027 0.989 ± 0.0004 6.496 ± 0.0539 3.286 ± 0.0220 1.023 ± 0.0157 0.441 ± 0.0020 6.134 ± 0.0863 4.661 ± 0.0218

S206 0.054 ± 0.0025 0.980 ± 0.0004 6.501 ± 0.0578 3.119 ± 0.0139 0.815 ± 0.0206 0.352 ± 0.0025 6.220 ± 0.0721 5.016 ± 0.0183

S207 0.051 ± 0.0036 0.981 ± 0.0007 6.463 ± 0.0587 2.985 ± 0.0483 0.841 ± 0.0150 0.594 ± 0.0013 6.188 ± 0.0703 4.628 ± 0.0339

S208 0.051 ± 0.0020 0.983 ± 0.0006 5.973 ± 0.3159 2.969 ± 0.0252 0.840 ± 0.0197 0.513 ± 0.0023 5.899 ± 0.0507 4.529 ± 0.0248

S209 0.044 ± 0.0030 0.998 ± 0.0001 6.826 ± 0.0538 2.064 ± 0.1400 0.622 ± 0.1350 0.637 ± 0.0848 6.585 ± 0.0657 2.629 ± 0.2310

S210 0.044 ± 0.0028 0.998 ± 0.0001 6.823 ± 0.0408 1.935 ± 0.1290 0.520 ± 0.1310 0.713 ± 0.0803 6.589 ± 0.0689 2.408 ± 0.2168

According to Table 9, the FID for real motion, the ground truth data for each scenario,
is 0.039 to 0.062, showing that the distribution of the original data was learned very well.
In addition, the FID for the generated motion is 0.342 to 1.532 for each scenario, confirming
that the data were well-generated by learning the distribution of the original data well. The
evaluation metric in the result table was constructed by referring to [6] for comparison.
Accuracy refers to whether A2M’s classifier generates the right action for real motion. For
real motion, the accuracy is very high, at 97% to 99%, but for generated motion, the accuracy
ranges from 35% to 93%, which shows a very large deviation. The scenario’s low accuracy
is due to the presence of multiple similar action classes. Diversity is an evaluation metric
for whether the model generates diverse data. Table 9 shows that our data have a diversity
of about 6 for all scenarios.

To compare our dataset with other datasets, we trained the A2M on our dataset under
the same experimental conditions as the three datasets [4,6,29] on which the A2M was
trained. As mentioned earlier, A2M can classify up to 13 action classes, so we selected 13
by applying random sampling, just as A2M applied to the other two datasets [4,29]. We
sampled seven subsets, which consist of 13 action classes of our dataset, and trained using
the A2M model. The results of the comparison experiment are shown in Table 10.

Table 10. Evaluation results of our dataset and comparison with other datasets based on [6]. The
lower the FID and the higher the Accuracy, the better the performance.

Dataset
Evaluation Metrics (Real Motion) Evaluation Metrics (Generated)

FID ↓ Accuracy ↑ Diversity → Multi
Modality → FID ↓ Accuracy ↑ Diversity → Multi

Modality →

HumanAct12 0.092 ± 0.007 0.997 ± 0.001 6.853 ± 0.053 2.449 ± 0.038 2.458 ± 0.079 0.923 ± 0.002 7.032 ± 0.002 2.870 ± 0.037

NTU-RGB+D 0.031 ± 0.004 0.999 ± 0.001 7.108 ± 0.048 2.194 ± 0.025 0.330 ± 0.008 0.949 ± 0.001 7.065 ± 0.043 2.052 ± 0.030

CMU Mocap 0.065 ± 0.006 0.930 ± 0.002 6.130 ± 0.079 2.720 ± 0.066 2.885 ± 0.116 0.680 ± 0.003 6.500 ± 0.061 4.120 ± 0.056

DGU-HAU (Ours) 0.041 ± 0.002 0.872 ± 0.001 6.528 ± 0.047 2.129 ± 0.014 0.992 ± 0.020 0.759 ± 0.001 6.157 ± 0.069 2.291 ± 0.021

According to Table 10, the FID value for each scenario of ground truth is 0.041. This
value is the second smallest among the four datasets, only surpassed by NTU RGB+D [4]
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by a mere 0.01 difference. The motion generated has an FID value of 0.992, the second-best
after NTU RGB+D, with a difference of 0.66.

Regarding accuracy, real motion recorded the lowest value among the four datasets at
87.2%. The value was lowered because there were other similar action classes when only
13 were randomly selected from 142. According to Table 9, the accuracy of real motion for
each scenario is 97% to 99%, similar to other datasets in Table 10. The accuracy of generated
motion is 75.9%, ranking third out of four datasets. The value seems to have been measured
with slightly lower accuracy for the same reason as the real motion.

In the case of Diversity, both real and generated motion were about 6, which showed
that the values were similar to other datasets. It has been determined that data can be
produced variously.

5. Discussion

A 3D human action dataset on utterance, DGU-HAU, is introduced in this paper.
Our dataset provides 14,116 data samples of motion capture data, 1352 RGB videos, their
textualized scenario script based on the audio data extracted from the video, and the
2408 annotation data samples in JSON format. The human actions are based on 14 scenarios
occurring in daily life, and these scenarios include about ten action classes per each one.
Therefore, there are 142 action classes in our dataset. Also, 166 subjects recorded action
classes in various combinations according to age group, gender, and body shape. Our
dataset is a general-purpose dataset that can be used for multiple studies that analyze
3D human actions. In this paper, our dataset was verified using a generative model,
Action2Motion [6], but it is possible to apply various models, such as human action
recognition and human–object interaction. Action2Motion is a 3D human action generation
model that leverages Lie Algebra for physically plausible human action. In the experimental
results, the FID values for real motion showed good results in the following order: NTU-
RGB+D, our dataset, CMU Mocap, and HumanAct12. Additionally, the FID values for
generated motion showed good results in the following order: NTU-RGB+D, our dataset,
HumanAct12, and CMU Mocap. Our dataset showed a difference of 0.01 and 0.66 in real
motion and generated motion, respectively, from the NTU-RGB+D dataset that showed
the best results, while differences of 0.05 in real motion and 1.89 in generated motion
were found from the dataset that showed the worst results. While NTU-RGB+D consists
of various types of actions that can occur in everyday life, our data consist of a series of
actions that can occur in the flow of conversation. Therefore, because there is continuity
of motion, even different motions within one scenario may have similar motions. For
these reasons, the NTU-RGB+D has clear distinctions between each operation. Still, our
data sometimes have actions that overlap or occur twice in the scenario, so the distinction
between each operation may be less clear than in NTU-RGB+D. Additionally, in our data,
we were able to confirm that the performance was slightly smaller than NTU-RGB+D
because the scale of the action was not large. Therefore, we were able to confirm that our
dataset was well-created and verified well.

In future work, we plan to apply various models that study 3D human actions in
different ways, such as the human action recognition model, to our dataset.
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