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Abstract—From the perspective of mobile robot vision, to
facilitate secure and seamless interactions between the robot and
its environment, it is paramount to attain precise and metic-
ulous distance estimation between the robot and the detected
entities. Moreover, in the absence of GPUs, mobile robots are
compelled to rely solely on CPU resources to manage vision-
related tasks and other operational imperatives. To address
the challenges above, we focused on reducing CPU usage in
the vision system and analyzing distance estimation accuracy
in two scenarios: leveraging RGB-D and RGB cameras. We
executed real-time object detection targeting humans utilizing
YOLOv8 Nano, subsequently undertaking a comparative analysis
between the distance estimates derived through monocular depth
estimation using a MobileNetV2 model, trained on the KITTI
dataset, and the distance measurements obtained from RGB-D
cameras. Additionally, we optimized the deep learning models
to reduce CPU usage, employing a hardware-specific technique,
OpenVINO conversion, and both a hardware-specific and a
hardware-agnostic strategy, Post-Training Quantization (PTQ).
Consequently, we reduced CPU utilization by approximately
4.62% in the RGB-D scenario and 5.32% in the RGB scenario.

Index Terms—Mobile Robot Vision, Real-time Object Detec-
tion, Monocular Depth Estimation, CPU Optimization, ROS

I. INTRODUCTION

In the domain of robotics, accurately estimating the distance
to objects is often of paramount importance, particularly in the
context of mobile robot vision systems [1], [2]. This precision
is crucial for several reasons, especially for robots designed to
navigate complex environments. Precise distance measurement
is essential for safely interacting with surrounding objects
and people. For instance, in environments where robots co-
exist with humans, the robot must recognize individuals and
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Fig. 1: The overall pipeline of our ROS packages. Within the
RGB-D package, the camera furnishes both depth data and
RGB information from real-time streaming video. In contrast,
the RGB package provides solely RGB data, necessitating
the extraction of depth information through a depth estimator.
Ultimately, both packages visualize the estimated distance and
bounding box coordinates superimposed on the real-time data
stream.

maintain a safe distance. Such capabilities not only help
prevent accidents but also avoid collisions, ensuring a secure
operational space between humans and robots.

In addition, despite the remarkable progress in deep learn-
ing, which has dramatically improved the capabilities of
computer vision systems, most deep learning-based models
demand the computational power of GPUs to function effec-



tively. This presents a significant hurdle when deploying such
models on edge devices, which predominantly rely on CPUs.
In robotics, especially for systems that require sophisticated
vision capabilities, it is relatively rare for these robots to be
outfitted with GPUs. Consequently, these robots often depend
exclusively on CPU resources to execute SLAM [3]–[5] and
vision-related operations due to budgetary limitations. This
reliance places substantial computational strain on the sys-
tem, making it imperative to employ appropriate optimization
strategies to maintain system stability and performance in such
resource-constrained environments.

Therefore, our efforts were directed toward reducing the
CPU utilization of the mobile robot’s vision system while
concurrently assessing the precision of camera-based dis-
tance estimation across two scenarios: one utilizing RGB-
D cameras and the other employing RGB cameras. Initially,
we employed YOLOv8 [6], specifically the YOLOv8 Nano
model, to execute real-time object detection, with a primary
emphasis on discerning humans, a prevalent dynamic entity
within indoor environments. Following this, we conducted a
comparative analysis of the distance measurements obtained
from RGB-D cameras against the distance estimations derived
from RGB cameras. For the RGB camera scenario, monocular
depth estimation was employed to infer distance information.
Specifically, we trained MobileNetV2 [7] using the KITTI [8]
dataset through deep learning, enabling it to function as a
depth estimator for the detected objects. All experiments and
analyses were executed within the Robot Operating System
(ROS) [9] framework, ensuring a robust and standardized
evaluation environment.

We also optimized the deep learning models in both sce-
narios—utilizing RGB-D and RGB cameras—to reduce CPU
usage to a manageable level and conducted a detailed analysis
of the variations in CPU consumption. For the object detector,
we employed hardware-specific optimization techniques, while
for the depth estimator, we applied both hardware-specific
and hardware-agnostic optimization strategies. The hardware-
specific approach involved converting the models into the
Open Visual Inference and Neural Network Optimization
(OpenVINO) [10] format, tailored specifically to the Intel
architecture of the devices used in our experiments. The
hardware-agnostic approach entailed applying Post-Training
Quantization (PTQ) [11], a method that reduces model com-
plexity by quantizing a pre-trained model, leading to lowering
computational demands without sacrificing significant accu-
racy.

Our main contributions are summarized as:
• We conducted human detection and distance estimation

on a mobile robot’s vision system, simulating the robot’s
vision system by processing live streaming data within
the ROS framework.

• We performed a comparative analysis of distance accu-
racy using camera equipment in robotic vision, dividing
the scenarios between RGB-D and RGB setups.

• We optimized the deep learning models utilizing both
hardware-specific and hardware-agnostic techniques and

analyzed the impact on CPU utilization.

II. RELATED WORK

A. Real-time Object Detection

YOLO not only pioneered the one-stage detector in the
era of deep learning but also, as evidence of its dominance
in the current landscape of real-time object detectors, many
YOLO series [6], [12]–[27] models have been continuously
released up to recent times. Since the inception of the original
YOLO model, numerous one-stage detectors such as SSD
[28], RetinaNet [29], CornerNet [30], CenterNet [31], and
DETR [32] have emerged. However, none have surpassed the
versatility of the YOLO series. Consequently, the YOLO series
remains the most ubiquitously adopted real-time detector.

B. Monocular Depth Estimation

Monocular depth estimation refers to the technique of infer-
ring depth information of a scene from a single RGB image.
Various research paradigms have been explored in this domain,
including supervised learning [33], self-supervised learning
[33], [34], and semi-supervised learning [35] approaches.

III. METHODOLOGY

A. RGB-D package

The RGB-D package leverages a YOLOv8 Nano model,
pre-trained on the MS COCO [36] dataset, as a human detec-
tor, with its performance benchmarked at approximately 51.4%
mAP on the human class within the COCO validation dataset.
Additionally, the package employs depth information extracted
from the RGB-D camera to compute the spatial displacement
of the detected human relative to the camera. Our decision
to adopt YOLOv8 Nano as the real-time human detector is
predicated upon its status as a relatively recent version within
the YOLO series, renowned for its streamlined usability and
minimal deployment complexity. Among the various YOLOv8
models, the Nano is distinguished by its minimal parameter
count and low inference latency, rendering it particularly well-
suited for real-time robotic vision applications. Moreover,
the human detector was subjected to hardware-specific op-
timization techniques, precisely tailored to our experimental
setup utilizing Intel CPUs. This approach entailed converting
the detector’s format from PyTorch to OpenVINO, a toolkit
specifically designed by Intel for optimizing deep learning
models across various Intel hardware platforms, minimizing
latency and computational overhead.

Fig. 2a depicts the RQT graph of the RGB-D package,
which comprises two active nodes and three topics. The
camera node publishes both the depth image topic and the
color image topic. The ”rgbd detection” node, functioning as
the human detector, subscribes to the color and depth images
published by the camera node and returns the class name
of the detected object (which is ”human” in this case), the
confidence score of the detected object, and the center of the
bounding box. For the distance of the detected human, this
value is calculated based on [37]. First, the node calculates
the depth value at the center of the 2D bounding box. Using



(a) RGB-D package

(b) RGB package

Fig. 2: Comparison of RQT graphs between RGB-D and RGB packages.

this center depth value, it then computes the average depth
of pixels within the detected object’s bounding box, where
the difference between each pixel’s depth value and the center
depth value does not exceed a specified threshold. Finally, the
node publishes messages containing the detection results and
the distance of the detected object. These messages, published
as the ”yolov8 detections” topic, include the class name of the
detected object, the confidence score, the center coordinates of
the 2D bounding box, and the distance of the detected object
from the camera.

B. RGB package

In the case of the RGB package, similar to the RGB-D
package, the YOLOv8 Nano model was employed as the
human detector, subjected to hardware-specific optimization,
and converted into the OpenVINO format. However, due to the
absence of intrinsic depth data from the camera, an additional
depth estimator was incorporated to predict depth information.
The depth estimator was constructed using MobileNetV2
as the backbone, and trained on the KITTI dataset, which
encompasses depth information of various objects, using the
code referenced from [38]. MobileNetV2 was selected as
the backbone for the depth estimator due to its lightweight
architecture, which minimizes memory consumption and com-
putational resource requirements. This attribute is particularly
advantageous in resource-constrained environments such as
real-time robotic vision applications.

We optimized the trained depth estimator using both
hardware-agnostic and hardware-specific approaches. The
hardware-agnostic method employed Post-Training Quantiza-
tion (PTQ), which involves applying quantization to a pre-
trained model. Specifically, since the depth estimator was
trained in TensorFlow, PTQ in this context refers to con-
verting the model to TensorFlow Lite (TFLite). During this
conversion, Dynamic Range Quantization was applied, reduc-
ing weights from float32 to int8 and dynamically converting
activations to int8 during runtime. This approach effectively
reduces model size while maintaining a relatively high level

of accuracy. The quantized depth estimator is ultimately con-
verted into the OpenVINO format, akin to the detector, and
optimized for execution on Intel CPUs.

Fig. 2b presents the RQT graph of the RGB package, which
comprises three nodes and three active topics. The camera
node publishes RGB data as a topic. The ”yolov8 node”,
functioning as the human detector, subscribes to this topic and
publishes the class name of the detected object (specifically
human), the confidence score, and the coordinates of the 2D
bounding box as a ”detections” topic. The ”mobilenet node”
designates the bounding box region, derived from the bound-
ing box coordinates included in the subscribed ”detections”
topic message, as the Region of Interest (ROI) and performs
depth estimation specifically within this ROI. This approach
confines the inference operations of the ”mobilenet node”,
which functions as the depth estimator, to the detected human’s
bounding box, thereby minimizing the computational load on
the CPU. The depth estimated for the detected human by
the ”mobilenet node” is published directly as the estimated
distance within the ”detection 3d” topic, which also includes
the prior ”detections” topic, obviating the need for further
distance calculations.

IV. RESULTS

This section evaluated CPU usage efficiency and distance
accuracy in the RGB-D and RGB packages, respectively. IV-A
describes the analysis of fluctuations in CPU utilization con-
sequent to optimization, while IV-B accounts for the findings
derived from the comparative analysis of distance accuracy.

The experiment was conducted on the 6 cores of an Intel(R)
Core(TM) i7-9750H CPU @ 2.60GHz, and ROS noetic [9].
We used an Intel RealSense d435i RGB-D camera with a 640×
480 pixels resolution. The camera’s frame rate was set to 30
frames per second (FPS), with the depth image in Z16 format
and the color image in RGB8 format. The camera was installed
150cm above the ground for the experiment.

A. CPU usage



Fig. 3: Impact of FPS adjustments and hardware-specific
optimizations on CPU utilization in the YOLOv8 Nano within
the RGB-D package. The camera node is also active when the
”\rgbd detection” node in Fig. 2a is active.

1) RGB-D package: Fig. 3 elucidates the variations in
CPU utilization within the RGB-D package, delineating the
impact of FPS adjustments and the effects of hardware-specific
optimizations on the YOLOv8 Nano, functioning as the human
detector.

The ”rgbd detection” node’s CPU usage varies significantly
based on the model format and FPS settings employed. In the
case of the PyTorch format, when the FPS setting exceeded 3,
it became futile to measure CPU utilization as the frequency
of the topic subscribed to by the terminal node fell below the
FPS setting published by the camera node. This discrepancy
in frequencies resulted in issues such as message loss and
delays in processing new data, rendering the evaluation of CPU
usage inconsequential under these conditions. Conversely, in
the OpenVINO format, a hardware-specific optimization of the
PyTorch format, no frequency discrepancy was observed even
when the FPS setting was increased to 5.

In the case of the PyTorch format, the CPU usage is
20.79%±1.52% at 3 FPS. By decrementing the FPS from 3 to
2, even by a mere single unit, there was a notable attenuation
in CPU usage, with a reduction of approximately 7%, resulting
in a final usage of 13.32%± 2.31%, as shown in Fig. 3.

In the case of the OpenVINO format, when the FPS
was configured to 5, the CPU usage was observed to be
43.76%± 5.84%, indicating a substantial computational load.
Conversely, when the FPS was adjusted to 3, the CPU utiliza-
tion exhibited a marked reduction, diminishing to 23.08% ±
5.55%. However, in this case, the average CPU usage of the
model is about 3% higher than the PyTorch format, as shown
in Fig. 3. This can be attributed to the OpenVINO format
having a significantly higher standard deviation of 5.55%,
indicating that, in some cases, the CPU usage is lower than
the PyTorch format. In contrast, in other cases, it is higher.

When the FPS is configured to 2 for both model formats,
the PyTorch format showed a CPU usage of 13.32% per core,
while the OpenVINO case showed a CPU usage of 8.7% per
core, which was 4.62% lower than the PyTorch format, as
shown in Fig. 3. Therefore, while the optimal FPS value may
vary depending on the CPU’s performance capabilities, it can
be ascertained that the optimization technique of converting
the model’s format to OpenVINO, tailored specifically to Intel
hardware, demonstrates substantial efficacy in attenuating CPU
usage.

Fig. 4: A comparative analysis of CPU utilization in the RGB
package, pre- and post-optimization of the YOLOv8 Nano
(human detector) and MobileNetv2 (depth estimator), under
an operational frame rate of 2 FPS. The camera node is also
active when the ”\detection” node in Fig. 2b is active.

2) RGB package: In the context of the RGB package, a
comparative analysis of CPU utilization was conducted under a
frame rate of 2 FPS, contingent upon the optimization status of
the YOLOv8 Nano, employed as the human detector, and the
MobileNetV2, utilized as the depth estimator. In the case of the
PyTorch format YOLOv8 Nano model with TensorFlow for-
mat MobileNetV2 model, the CPU usage is 26.65%± 5.32%.
When the format of MobileNetV2 changed to OpenVINO and
applied PTQ, CPU usage is 21.54% ± 3.61%, as shown in
Fig. 4.. In the case of the OpenVINO format YOLOv8 Nano
model with the MobileNetV2 model in TensorFlow format,
the CPU usage is 26.66% ± 5.64%. When the format of
MobileNetV2 changed to OpenVINO and applied PTQ, the
usage of CPU is 21.33%± 2.23%, as shown in Fig. 4.

As illustrated in Fig. 4, converting the YOLOv8 Nano
model into the OpenVINO format through hardware-specific
optimization yielded negligible alterations in CPU utilization.
Conversely, when applying hardware-agnostic PTQ to the
MobileNetV2 model and converting it to OpenVINO, there
was a discernible reduction in CPU usage by approximately
5.11%. When both the YOLOv8 Nano and MobileNetV2
models were optimized, CPU usage reached its lowest point,



(a) RGB-D package (b) RGB-D package

Fig. 5: Comparative analysis of distance estimation accuracy between (a) RGB and (b) RGB-D packages, demonstrating
detected object bounding boxes and their measured distances. The green texts in both figures are identically written inside the
pink box in the top left corner of the figures.

showing a decrease of around 5.32% compared to the baseline.
However, this reduction was only marginally greater—by
about 0.22%—than when solely optimizing the MobileNetV2.
These findings suggest that within the RGB package, the opti-
mization of the depth estimator proves to be more efficacious
in reducing CPU consumption than the optimization of the
human detector.

B. Distance accuracy

1) RGB-D package: The empirical findings for human
distance estimation are presented in Fig. 5a. As detailed in
Table I, at a ground truth distance of 2 meters, the estimated
distance was approximately 1.97 meters, reflecting a marginal
error of 0.03 meters. When the ground truth was 4 meters,
the estimation yielded around 3.81 meters, corresponding
to an error of 0.19 meters. However, the estimation error
notably increased when the distance exceeded the camera’s
optimal range of 3 meters. Specifically, at a ground truth of 6
meters, the estimated distance was 5.25 meters, resulting in an
error of approximately 70 centimeters, while at 8 meters, the
error expanded to around 1 meter. These results underscore
the degradation in distance accuracy of the depth camera at
extended ranges.

2) RGB package: The experimental findings about human
distance estimation within the RGB package are delineated in
Fig. 5b. When the actual distance was 2 meters, the estimated
value was 4 meters, resulting in a substantial discrepancy.
However, the disparity between the actual and estimated values
was significantly reduced in subsequent cases. Specifically,
when the ground truth was 4 meters, the estimated distance
was 3.95 meters, with an error margin of 0.05 meters, as
indicated in Table I. Furthermore, Table I reveals that for an
actual distance of 6 meters, the estimation was 5.82 meters,
and for 8 meters, the estimation was 7.93 meters, with a

minimal error of 0.07 meters. Therefore, these results elucidate
that the RGB package demonstrates superior distance accuracy
at relatively greater distances than the RGB-D package.

TABLE I: Comparison of the distance accuracy results be-
tween RGB-D and RGB package of Fig. 5. The distance
estimations within the RGB-D package are derived utilizing
the depth data provided by the RGB-D camera. In contrast,
the estimations for the RGB package are computed using
MobileNetV2, which has been trained on the KITTI dataset.

Package Ground Truth Estimation Difference

RGB-D

2.00m 1.97m 0.03m
4.00m 3.81m 0.19m
6.00m 5.25m 0.75m
8.00m 6.95m 1.05m

RGB

2.00m 4.00m 2.00m
4.00m 3.95m 0.05m
6.00m 5.82m 0.18m
8.00m 7.93m 0.07m

V. CONCLUSION

In this paper, we conducted an analysis predicated upon
the vision system of a mobile robot by executing real-time
human detection and distance estimation tasks within the
ROS framework. We conducted a comparative analysis of
distance accuracy using camera systems in robotic vision, with
scenarios divided between RGB-D and RGB configurations.
The deep learning models were optimized by leveraging both
hardware-specific and hardware-agnostic methodologies, with
an examination of their impact on CPU utilization. Hardware-
specific optimization techniques were employed for the ob-
ject detection task, whereas hardware-specific and hardware-
agnostic strategies were implemented for depth estimation.
The hardware-specific optimization involved converting the



models into the OpenVINO format, precisely engineered for
the Intel architecture used in our experimental devices. On
the other hand, the hardware-agnostic approach included the
application of PTQ, thereby reducing computational load while
maintaining accuracy.
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